Author(s): Nurina Titisari, Izza Nuruzzakiyah Fatimatuzzahra, Nidya Putri Rahmawati, Nirmala Sekar Adila, Ahmad Fauzi, Intan Shameha Abdul Razak, Nurdiana Samsulrizal, Hafandi Ahmad

Email(s): hafandi@upm.edu.my , nurina_titisari@ub.ac.id

DOI: 10.52711/0974-360X.2024.00528   

Address: Nurina Titisari*1,4, Izza Nuruzzakiyah Fatimatuzzahra4, Nidya Putri Rahmawati4, Nirmala Sekar Adila4, Ahmad Fauzi5, Intan Shameha Abdul Razak1, Nurdiana Samsulrizal3, Hafandi Ahmad1,2**
1Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang Selangor, Malaysia.
2Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang Selangor Darul Ehsan, Malaysia.
3Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia.
4Department of Veterinary Physiology, Faculty of Veterinary Medicine, Universitas Brawijaya, East Java, Indonesia.
5Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, East Java, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 7,     Year - 2024


ABSTRACT:
Streptozotocin (STZ) is widely used to increase blood glucose levels and generate diabetic animal models. However, the dose of STZ is important as it may lead to inadequate induction of diabetes, metabolic complications, and influence the behavior of animals. Therefore, this study aimed to determine the various impacts of different STZ dosages on the brain cognitive performance associated with hyperglycemia and organ complications of diabetic rats. Animals were divided into three groups: (1) rats received a single dose of STZ (SSTZ; 55mg/kg), (2) rats received multiple doses of STZ (MSTZ; 40mg/kg) and (3) control rats received citrate buffer (CON; 0.2mL/rat) for three consecutive days intraperitoneally. Brain cognitive performance was assessed using the Y-maze test, and blood glucose level was performed weekly. The histopathological study was conducted on the pancreas, liver, kidney, and brain tissues. Results showed that animals with single and multiple doses of STZ decreased the number of entries and time spent in the novel arm of the Y-maze task. Multiple doses of STZ caused severe degenerative changes in the pancreatic islet, brain neuron apoptosis, inflammation in the liver, and tubular cell injuries. Thus, these results indicate that both single and multiple dosages of STZ influenced brain cognitive performance, which was associated with hyperglycemia and tissue degeneration in diabetic animals.


Cite this article:
Nurina Titisari, Izza Nuruzzakiyah Fatimatuzzahra, Nidya Putri Rahmawati, Nirmala Sekar Adila, Ahmad Fauzi, Intan Shameha Abdul Razak, Nurdiana Samsulrizal, Hafandi Ahmad. Brain Cognitive Performance and Histopathological effects of Diabetic rats Induced by Single and Multiple Dosages of Streptozotocin. Research Journal of Pharmacy and Technology. 2024; 17(7):3381-8. doi: 10.52711/0974-360X.2024.00528

Cite(Electronic):
Nurina Titisari, Izza Nuruzzakiyah Fatimatuzzahra, Nidya Putri Rahmawati, Nirmala Sekar Adila, Ahmad Fauzi, Intan Shameha Abdul Razak, Nurdiana Samsulrizal, Hafandi Ahmad. Brain Cognitive Performance and Histopathological effects of Diabetic rats Induced by Single and Multiple Dosages of Streptozotocin. Research Journal of Pharmacy and Technology. 2024; 17(7):3381-8. doi: 10.52711/0974-360X.2024.00528   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-61


REFERENCES:
1.    Grieb P. Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer’s Disease: in Search of a Relevant Mechanism. Molecular Neurobiology. 2016; 53(3): 1741–1752. https://doi.org/10.1007/S12035-015-9132-3/FIGURES/5
2.    Eleazu CO. Eleazu KC. Chukwuma S. Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes and Metabolic Disorders. 2013; 12(1): 1–7. https://doi.org/10.1186/2251-6581-12-60
3.    Ravelli KG. Rosário BDA. Camarini R. Hernandes MS. Britto LR. Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice. Neurotoxicity Research. 2017; 31(3): 327–333. https://doi.org/10.1007/s12640-016-9684-7
4.    Kaur M. Kaur N. Muthuraman A. Kumar S. The Neuroprotective and Antinociceptive effect of Antidiabetic3-(2-chlorophenyl)-4-imino-5-phenyl-2-(2-methoxyphenyl)-2H,3H,5H-[1,2,5]thiadiazolidin-1-oxide (CIPMTO) in Streptozotocin-induced diabetic neuropathic pain in rats: primary proof of concept. Research Journal of Pharmacy and Technology. 2022; 15(12): 5405–5414. https://doi.org/10.52711/0974-360X.2022.00911
5.    Jadhav GB. Deshmukh AC. Mundlod KN. Effect of Linagliptin and Niclosamide on Streptozotocin Induced Diabetic Neuropathy in Rats. Research Journal of Pharmacy and Technology. 2020; 13(5): 2101–2106. https://doi.org/10.5958/0974-360X.2020.00378.9
6.    Yang Y. Mao D. Chen X. Zhao L. Tian Q. Liu C. Zhou BLS. Decrease in retinal neuronal cells in streptozotocin-induced diabetic mice. Molecular Vision. 2012; 18(November 2011): 1411–14
7.    Fukuoka A. Fujii E. Kato A. Arakawa H. Oda Y. Ito T. Sugimoto T. Suzuki M. Development of a novel model for streptozotocin-induced renal cell tumors and chronic diabetes in Göttingen minipigs. Journal of Toxicologic Pathology. 2005; 18(3): 167–173. https://doi.org/10.1293/tox.18.167
8.    Shyng YC. Devlin H. Sloan P. The effect of streptozotocin-induced experimental diabetes mellitus on calvarial defect healing and bone turnover in the rat. International Journal of Oral and Maxillofacial Surgery. 2001; 30(1): 70–74. https://doi.org/10.1054/ijom.2000.0004
9.    Bathina S. Srinivas N. Das UN. Streptozotocin produces oxidative stress, inflammation and decreases BDNF concentrations to induce apoptosis of RIN5F cells and type 2 diabetes mellitus in Wistar rats. Biochemical and Biophysical Research Communications. 2017; 486(2): 406–413. https://doi.org/10.1016/J.BBRC.2017.03.054
10.    Singh JCH. Kakalij RM. Kshirsagar RP. Kumar BH. Komakula SSB. Diwan PV. Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharmaceutical Biology. 2015; 53(5): 630–636. https://doi.org/10.3109/13880209.2014.935866
11.    Wang K. Song F. Xu K. Liu Z. Han S. Li F. Sun Y. Irisin attenuates neuroinflammation and prevents the memory and cognitive deterioration in streptozotocin-induced diabetic mice. Mediators of Inflammation. 2019; 1567179.  https://doi.org/10.1155/2019/1567179
12.    Andrade EL. Bento AF. Cavalli J. Oliveira S K. Schwanke RC. Siqueira JM. Freitas CS. Marcon R.  Calixto JB. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas. 2016; 49(12): e5646. https://doi.org/10.1590/1414-431X20165646
13.    Thalla S. Tammu J. Thalla SR. Nootropic activity of Ocimum gratissimum in Streptozotocin induced Amnesia Nootropic activity of Ocimum gratissimum in Streptozotocin induced Amnesia. Asian J. Research Chem. 2012; 5(12): 1437–1439.
14.    Ali SK. Ali RH. Effects of antidiabetic agents on Alzheimer’s disease biomarkers in experimentally induced hyperglycemic rat model by streptozocin. PLOS ONE. 2022; 17(7): e0271138. https://doi.org/10.1371/JOURNAL.PONE.0271138
15.    Kamat PK. Streptozotocin induced Alzheimer’s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regeneration Research. 2015; 10(7): 1050–1052. https://doi.org/10.4103/1673-5374.160076
16.    Zhang Y. Ding R. Wang S. Ren Z. Xu L. Zhang X. Zhao J. Ding Y. Wu Y. Gong Y. Effect of intraperitoneal or intracerebroventricular injectionof streptozotocin on learning and memory in mice. Experimental and Therapeutic Medicine. 2018; 16(3): 2375–2380. https://doi.org/10.3892/ETM.2018.6487/HTML
17.    Hikmah N. Dewi A. Shita P. Maulana H. Diabetic Blood Glucose Level Profile with Stratified Dose Streptozotocin (SD-STZ) and Multi Low Dose Streptozotocin (MLD-STZ) Induction Methods. Journal of Tropical Life Science. 2015; 5(1): 30–34. https://doi.org/10.11594/jtls.05.01.06
18.    Sachan AK. Rao CV. Sachan NK. Determination of Antidiabetic Potential in Crude Extract of Caesalpinia bonducella Wild on normal and Streptozotocin Induced Diabetic Rats. Research Journal of Pharmacy and Technology. 2020; 13(2): 857–861. https://doi.org/10.5958/0974-360X.2020.00162.6
19.    Handayani TW. Anggi V. Afrizal. Magfirah. Tandi J. Potential Test of Soy-yamghurt against Antidiabetic in male white rats (Rattus norvegicus) Streptozotocin induced. Research Journal of Pharmacy and Technology. 2022; 15(9): 4139–4143. https://doi.org/10.52711/0974-360X.2022.00695
20.    Zuraidah AA. Winarni D. Punnapayak H. Darmanto W. Therapeutic effect of okra (Abelmoschus esculentus moench) pods extract on streptozotocin-induced type-2 diabetic mice. Research Journal of Pharmacy and Technology. 2019; 12(8): 3703–3708. https://doi.org/10.5958/0974-360X.2019.00633.4
21.    Patel BD. Kori ML. Antidiabetic Effect of Ammania baccifera Linn leaf on Streptozotocin Induced Diabetes in Male Albino Wistar Rats. Research Journal of Pharmacy and Technology. 2018; 11(11): 4773–4780. https://doi.org/10.5958/0974-360X.2018.00869.7
22.    Lee JH. Yang SH. Oh JM. Lee MG. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. Journal of Pharmacy and Pharmacology. 2010; 62(1): 1–23. https://doi.org/10.1211/jpp.62.01.0001
23.    Kottaisamy CPD. Raj DS. Prasanth Kumar V. Sankaran U. Experimental animal models for diabetes and its related complications—a review. Laboratory Animal Research. 2021; 37(1): 1–14. https://doi.org/10.1186/s42826-021-00101-4
24.    Azmi NSA. Hashim N. Samsulrizal N. Zin NSNM. The osteoprotective effect of azadirachta excelsa leaves extract on bone of streptozotocin-induced diabetic rats. Jurnal Teknologi. 2019; 81(5): 129–137. https://doi.org/10.11113/JT.V81.13681
25.    Chandirasegaran G. Elanchezhiyan C. Ghosh K. Effects of Berberine chloride on the liver of streptozotocin-induced diabetes in albino Wistar rats. Biomedicine and Pharmacotherapy. 2018; 99(December 2017): 227–236. https://doi.org/10.1016/j.biopha.2018.01.007
26.    Wang-Fischer Y. Garyantes T. Improving the reliability and utility of streptozotocin-induced rat diabetic model. Journal of Diabetes Research. 2018; 8054073. https://doi.org/10.1155/2018/8054073
27.    Bolzán AD. Bianchi MS. Genotoxicity of Streptozotocin. Mutation Research - Reviews in Mutation Research. 2002; 512(2–3): 121–134. https://doi.org/10.1016/S1383-5742(02)00044-3
28.    Goyal SN. Reddy NM. Patil KR. Nakhate KT. Ojha S. Patil CR. Agrawal YO. Challenges and issues with streptozotocin-induced diabetes – A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chemico-Biological Interactions. 2016; 244: 49–63. https://doi.org/10.1016/J.CBI.2015.11.032
29.    Su EN. Alder VA. Yu DY. Yu PK. Cringle SJ. Yogesan K. Continued progression of retinopathy despite spontaneous recovery to normoglycemia in a long-term study of streptozotocin-induced diabetes in rats. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2000; 238(2): 163–173. https://doi.org/10.1007/s004170050028
30.    Zhang C. Li J. Hu C. Wang J. Zhang J. Ren Z. Song X. Jia L. Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice. Scientific Reports. 2017; 7(1): 1–13. https://doi.org/10.1038/s41598-017-11457-w.
31.    Gajdošík A. Gajdošíková A. Štefek M. Navarová J. Hozová R. Streptozotocin-induced experimental diabetes in male Wistar rats. General Physiology and Biophysics. 1999; 18 Spec No(SPEC. ISS.): 54–62. https://pubmed.ncbi.nlm.nih.gov/10703720/
32.    Hafandi A. Begg DP. Premaratna SD. Sinclair AJ. Jois M. Weisinger RS. Dietary repletion with ω3 fatty acid or with COX inhibition reverses cognitive effects in F3 ω3 fatty-acid-deficient mice. Comparative Medicine. 2014; 64(2): 106–109.
33.    Sopian NFA. Ajat M. Shafie NI. Noor MHM. Ebrahimi M. Rajion MA. Meng GY. Ahmad H. Does short-term dietary omega-3 fatty acid supplementation influence brain hippocampus gene expression of zinc transporter-3? International Journal of Molecular Sciences. 2015; 16(7): 15800–15810. https://doi.org/10.3390/ijms160715800
34.    Slaoui M. Fiette L. Histopathology Procedures: From Tissue Sampling to Histopathological Evaluation. Methods in Molecular Biology. 2011; 691(January): 69–82. https://doi.org/10.1007/978-1-60761-849-2_4
35.    Rifaai RA. El-Tahawy NF. Ali Saber E. Effect of Quercetin on the Endocrine Pancreas of the Experimentally Induced Diabetes in Male Albino Rats: A Histological and Immunohistochemical Study. Journal of Diabetes and Metabolism. 2012; 03(03). https://doi.org/10.4172/2155-6156.1000182
36.    Mali KK. Dias RJ. Havaldar VD. Yadav SJ. Antidiabetic Effect of Garcinol on Streptozotocin-induced Diabetic Rats. Indian Journal of Pharmaceutical Sciences. 2017; 79(3): 463–468. https://doi.org/10.4172/PHARMACEUTICAL-SCIENCES.1000250
37.    Akbarzadeh A. Norouzian D. Mehrabi MR. Jamshidi S. Farhangi A. Allah Verdi A. Mofidian SMA. Lame Rad B. Induction of diabetes by Streptozotocin in rats. Indian Journal of Clinical Biochemistry. 2007; 22(2): 60. https://doi.org/10.1007/BF02913315
38.    Li RJ. Qiu SD.Tian H. Zhou SW. [Diabetes induced by multiple low doses of STZ can be spontaneously recovered in adult mice]. Dong Wu Xue Yan Jiu = Zoological Research / “Dong Wu Xue Yan Jiu” Bian Ji Wei Yuan Hui Bian Ji. 2013; 34(3): 238–243. https://doi.org/10.11813/j.issn.0254-5853.2013.3.0238
39.    Hartmann K. Besch W. Zühlke H. Spontaneous Recovery of Streptozotocin Diabetes in Mice. Experimental and Clinical Endocrinology and Diabetes. 1989; 93(2): 225–230. https://doi.org/10.1055/s-0029-1210861
40.    Mostafavinia A. Amini A. Ghorishi SK. Pouriran R. Bayat M. The effects of dosage and the routes of administrations of streptozotocin and alloxan on induction rate of type1 diabetes mellitus and mortality rate in rats. Laboratory Animal Research. 2016; 32(3): 160. https://doi.org/10.5625/LAR.2016.32.3.160
41.    Kataoka M. Kawamuro Y. Shiraki N. Miki R. Sakano D. Yoshida T. Yasukawa T. Kume K. Kume S. Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment. Biochemical and Biophysical Research Communications. 2013; 430(3): 1103–1108. https://doi.org/10.1016/J.BBRC.2012.12.030
42.    Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Current Protocols. 2021; 1(4): 1–21. https://doi.org/10.1002/cpz1.78
43.    Ghule S. Prakash T. Kotresha D. Karki R. Surendra V. Goli D. Anti-diabetic activity of Celosia argentea root in streptozotocin-induced diabetic rats. International Journal of Green Pharmacy. 2010; 4(3): 206–211. https://doi.org/10.4103/0973-8258.69183
44.    Prieur E. Jadavji N. Assessing Spatial Working Memory Using the Spontaneous Alternation Y-maze Test in Aged Male Mice. Bio-Protocol. 2019; 9(3): 1–10. https://doi.org/10.21769/bioprotoc.3162
45.    Matough FA. Budin SB. Hamid ZA. Alwahaibi N. Mohamed J. The Role of Oxidative Stress and Antioxidants in Diabetic Complications. Sultan Qaboos University Medical Journal. 2012; 12(1): 5. https://doi.org/10.12816/0003082
46.    Johansen JS. Harris AK. Rychly DJ. Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology. 2005; 4(1): 1–11. https://doi.org/10.1186/1475-2840-4-5/COMMENTS
47.    Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circulation Research. 2010; 107(9): 1058. https://doi.org/10.1161/CIRCRESAHA.110.223545
48.    Vadivelan R. Dhanabal SP. Raja Rajeswari. Shanish A. Elango K. Suresh B. Oxidative Stress in Diabetes- A Key Therapeutic Agent. Research Journal of Pharmacology and Pharmacodynamics. 2010; 2(3): 221–227. https://rjppd.org/AbstractView.aspx?PID=2010-2-3-13
49.    Massaad CA. Klann E. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxidants & Redox Signaling. 2011; 14(10): 2013-2054. https://doi.org/10.1089/ARS.2010.3208
50.    Singh A. Kukreti R. Saso L. Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019; 24(8). https://doi.org/10.3390/MOLECULES24081583
51.    Yang RH. Wang F. Hou XH. Cao ZP. Wang B. Xu XN. Hu SJ. Dietary omega-3 polyunsaturated fatty acids improves learning performance of diabetic rats by regulating the neuron excitability. Neuroscience. 2012;12: 93–103. https://doi.org/10.1016/j.neuroscience.2012.04.005
52.    Cardinal JW. Margison GP. Mynett KJ. Yates AP. Cameron DP. Elder RH. Increased Susceptibility to Streptozotocin-Induced β-Cell Apoptosis and Delayed Autoimmune Diabetes in Alkylpurine- DNA-N-Glycosylase-Deficient Mice. Molecular and Cellular Biology. 2001; 21(16): 5605. https://doi.org/10.1128/MCB.21.16.5605-5613.2001.
53.    Yang J. Zhang W. Jiang W. Sun X. Han Y. Ding M. Shi Y. Deng H. P21cip-Overexpression in the Mouse β Cells Leads to the Improved Recovery from Streptozotocin-Induced Diabetes. PLOS ONE. 2009; 4(12): e8344. https://doi.org/10.1371/JOURNAL.PONE.0008344
54.    Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. In Diabetologia. 2008; 51(2): 216–226. https://doi.org/10.1007/s00125-007-0886-7
55.    Zhang Y. Zhang J. Hong M. Huang J. Wang R. Tan B. Huang P. Study on the Optimization and Stability of Single-dose Streptozotocin-induced Diabetic Modelling in Rats. 2021. https://doi.org/10.21203/rs.3.rs-310098/v1
56.    Babby A. Elanchezhiyan C. Tannic acid administration ameliorates the levels of Hepatic markers, Carbohydrate metabolizing enzymes and Inflammatory markers in the liver of Streptozotocin-induced diabetic Albino Wistar rats. Research Journal of Pharmacy and Technology. 2020; 13(12): 6156–6162. https://doi.org/10.5958/0974-360X.2020.01074.4
57.    Pattabiraman K. Muthukumaran P. Antidiabetic and Antioxidant Activity of Morinda tinctoria roxb Fruits Extract in Streptozotocin-Induced Diabetic Rats. Asian J. Pharm. Tech. 2011; 1(2): 34–39.
58.    El Miniawy HMF. Ahmed KA. Ibrahem EM. Sabry D. Ismail TA. Amer E. Camel’s wharton jelly mesenchymal stem cell is a novel tool for regeneration of induced diabetes mellitus. Journal of Translational Science. 2017; 3(5). https://doi.org/10.15761/jts.1000196


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available