Author(s):
Yuliati, Fatma Yasmin Mahdani, Shafa Putri Khansa, Dealtrini Pongsumae, Wahidah Tsamara Putri Yastuti, Muhammad Afif Wardana, Meircurius Dwi Condro Surboyo, Mohammed Aljunaid, Huda Rashad Qaid, Aqsa Sjuhada Oki, Fitria Abbas Thalib, Rini Devijanti Ridwan, Indeswati Diyatri
Email(s):
indeswati-d@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2024.00623
Address:
Yuliati1,2, Fatma Yasmin Mahdani3,4, Shafa Putri Khansa7, Dealtrini Pongsumae7, Wahidah Tsamara Putri Yastuti7, Muhammad Afif Wardana7, Meircurius Dwi Condro Surboyo4, Mohammed Aljunaid1,5,6, Huda Rashad Qaid1,6, Aqsa Sjuhada Oki2, Fitria Abbas Thalib8, Rini Devijanti Ridwan2, Indeswati Diyatri2*
1Doctoral Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132 – Indonesia.
2Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132 – Indonesia.
3Oral Medicine Study Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132 – Indonesia.
4Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132 – Indonesia.
5Department of Oral and Dental Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen.
6Faculty of Oral and Dental Medicine, Al-Saeed University, Taiz, Yemen.
7Bachelor of Dental Science Program. Faculty of Dental Medicine, Universitas Airlangga, Surabaya 601
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
Background: EGCG, the principal flavonoid found in green tea, exhibits numerous advantageous properties, notably promoting bone regeneration by enhancing the activity of osteoblasts and osteogenic differentiation. Cell-free therapy is an alternative to avoiding the side effects of cell-based therapy. By harnessing the potential of metabolites, SHED combined with EGCG can be a biomaterial to increase osteogenesis. Objectives: This study aims to assess the viability of osteoblast cells when exposed to the combination of SHED metabolites and two concentrations of EGCG, namely 10µM and 50µM. Methods: Osteoblast viability is examined with the 3-(4.5-dimethylthiazole-2-yl)2.5-diphenyl tetrazolium bromide (MTT) assays using an ELISA reader 570nm, and the absorbance value is converted to per cent form. CD50 is a parameter that indicates non-toxicity when the percentage value of living cells is more than 50%. Results: The percentage of living cells exceeded 50%, and statistically significant distinctions were observed among the control media, control cell groups, and the groups exposed to the combination of SHED metabolites and EGCG (p = 0.031). Conclusions: The viability of osteoblast cells exposed to the combination of SHED metabolites and EGCG 10µM, as well as the combination of SHED metabolites and EGCG 50µM, showed no toxicity. The combination of 10µM SHED metabolites and EGCG showed a higher osteoblast cell viability value than the combination of SHED metabolites and EGCG 50 µM.
Cite this article:
Yuliati, Fatma Yasmin Mahdani, Shafa Putri Khansa, Dealtrini Pongsumae, Wahidah Tsamara Putri Yastuti, Muhammad Afif Wardana, Meircurius Dwi Condro Surboyo, Mohammed Aljunaid, Huda Rashad Qaid, Aqsa Sjuhada Oki, Fitria Abbas Thalib, Rini Devijanti Ridwan, Indeswati Diyatri. The Viability of Osteoblasts against SHED Metabolites and EGCG for Biomaterial Osteogenesis. Research Journal of Pharmacy and Technology.2024; 17(8):4015-1. doi: 10.52711/0974-360X.2024.00623
Cite(Electronic):
Yuliati, Fatma Yasmin Mahdani, Shafa Putri Khansa, Dealtrini Pongsumae, Wahidah Tsamara Putri Yastuti, Muhammad Afif Wardana, Meircurius Dwi Condro Surboyo, Mohammed Aljunaid, Huda Rashad Qaid, Aqsa Sjuhada Oki, Fitria Abbas Thalib, Rini Devijanti Ridwan, Indeswati Diyatri. The Viability of Osteoblasts against SHED Metabolites and EGCG for Biomaterial Osteogenesis. Research Journal of Pharmacy and Technology.2024; 17(8):4015-1. doi: 10.52711/0974-360X.2024.00623 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-8-71
REFERENCES:
1. Widyaputra S. Sitam S. Suherna I. Fitri AD. Rachman A. Comparison of bone regeneration in hADMSC versus hUCBMSC with hBMMSC as a reference: A literature review of potential bone regeneration. Research Journal of Pharmacy and Technology. 2021; 14(4): 1993-8. https://doi.org/10.52711/0974-360X.2021.00353
2. Kuntjoro M. Agustono B. Prasetyo EP. Salim S. Rantam FA. Hendrijantini N. The effect of Advanced Glycation End Products (AGEs) on human Umbilical Cord Mesenchymal Stem Cells (hUCMSCS) with regard to osteogenesis and calcification. Research Journal of Pharmacy and Technology. 2021; 14(8): 4019-24. https://doi.org/10.52711/0974-360X.2021.00696
3. Potdar PD. Jethmalani YD. Human dental pulp stem cells: Applications in future regenerative medicine. World Journal of Stem Cells. 2015; 7(5): 839. https://doi.org/10.4252/wjsc.v7.i5.839
4. Ullah I. Subbarao RB. Rho GJ. Human mesenchymal stem cells-current trends and future prospective. Bioscience reports. 2015; 35(2): e00191. https://doi.org/10.1042/BSR20150025
5. Nakajima K. Kunimatsu R. Ando K. Ando T. Hayashi Y. Kihara T, et al. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications. 2018; 497(3): 876-82. https://doi.org/10.1016/j.bbrc.2018.02.156
6. Luo P. Jiang C. Ji P. Wang M. Xu J. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Research and Therapy. 2019; 10(1): 1-12. https://doi.org/10.1186/s13287-019-1341-7
7. Rosa V. Dubey N. Islam I. Min K-S. Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells International. 2016; 2016. https://doi.org/10.1155/2016/5957806
8. Katagiri W. Sakaguchi K. Kawai T. Wakayama Y. Osugi M. Hibi H. A defined mix of cytokines mimics conditioned medium from cultures of bone marrow‐derived mesenchymal stem cells and elicits bone regeneration. Cell Proliferation. 2017; 50(3): e12333. https://doi.org/10.1111/cpr.12333
9. Rantam FA. Nugraha AP. Mahyudin F. Bumi C. Susilowati H. Hendrianto E, et al. A Potential Differentiation of Adipose and Hair Follicle-derived Mesenchymal Stem Cells to Generate Neurons Induced with EGF, FGF, PDGF and Forskolin. Researh Journal of Pharmacy and Technology. 2020; 13(1): 275-81. https://doi.org/10.5958/0974-360X.2020.00056.6
10. Athanerey A. Verma NR. Bhargava P. Patra P. Kumar A. Mesenchymal stem cells prove a significant role in Chronic non-healing ulcer progressive healing. Research Journal of Pharmacy and Technology. 2021; 14(1): 373-7. https://doi.org/10.5958/0974-360X.2021.00068.8
11. Hiraki T. Kunimatsu R. Nakajima K. Abe T. Yamada S. Rikitake K, et al. Stem cell‐derived conditioned media from human exfoliated deciduous teeth promote bone regeneration. Oral Diseases. 2020;26(2):381-90. https://doi.org/10.1111/odi.13244
12. Salah RS. Ahmed HH. Abd-Allah SH. Hassan RE. Khalil WK. Abd-Rabou AA, et al. The anti-epileptic efficiency of mesenchymal stem cells against pilocarpine model of acute epilepsy. Research Journal of Pharmacy and Technology. 2021; 14(3): 1255-66. https://doi.org/10.5958/0974-360X.2021.00223.7
13. Bar JK. Lis-Nawara A. Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential. International Journal of Molecular Sciences. 2021; 22(21): 12018.
14. Liu J. Lu Y. Liu J. Jin C. Meng Y. Pei D. Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic differentiation of human periodontal ligament cells. BMC Oral Health. 2019; 19: 1-10. https://doi.org/10.1186/s12903-019-0768-7
15. Vargas‐Sanchez PK. Pitol DL. de Sousa LG. Beloti MM. Rosa AL. Rossi AC, et al. Green tea extract rich in epigallocatechin gallate impairs alveolar bone loss in ovariectomised rats with experimental periodontal disease. International Journal of Experimental Pathology. 2020; 101(6): 277-88. https://doi.org/10.1111/iep.12379
16. Jung I-H. Yun J-H. Cho A-R. Kim C-S. Chung W-G. Choi S-H. Effect of (-)-epigallocatechin-3-gallate on maintaining the periodontal ligament cell viability of avulsed teeth: a preliminary study. Journal of Periodontal and Implant Science. 2011; 41(1): 10-6. https://doi.org/10.5051/jpis.2011.41.1.10
17. Pramila K. Julius A. In vitro antioxidant effect of green tea polyphenol epigallocatechin-3-Gallate (EGCG) in protecting cardiovascular diseases. Research Journal of Pharmacy and Technology. 2019; 12(3): 1265-7. https://doi.org/10.5958/0974-360X.2019.00211.7
18. Nuraini P. Puteri MM. Pramesty E. Anti-biofilm Activity of Epigallocatechin gallate (EGCG) against Streptococcus mutans bacteria. Research Journal of Pharmacy and Technology. 2021; 14(9): 5019-23. https://doi.org/10.52711/0974-360X.2021.00875
19. Rosita N. Nailufa Y. Hariyadi DM. Characteristics, Stability and Activity of Epigallocatechin Gallate (EGCG) Chitosan Microspheres: Effect of Polymer Concentration. Research Journal of Pharmacy and Technology. 2019; 13(5): 2303-9. https://doi.org/10.5958/0974-360X.2020.00415.1
20. Kharisma VD. Widyananda MH. Ansori ANM. Nege A. Naw S. Nugraha A. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res. 2021; 9(4): 435-45. https://doi.org/10.56499/jppres21.1009_9.4.435
21. Lin S-Y. Kang L. Wang C-Z. Huang HH. Cheng T-L. Huang H-T, et al. (−)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells. Molecules. 2018; 23(12): 3221. https://doi.org/10.3390/molecules23123221
22. Peng Y. Yu B. Liu F. Epigallocatechin-3-gallate promotes osteoblastic activity in human osteoblast-like cells. Tropical Journal of Pharmaceutical Research. 2016; 15(2): 313-7. https://doi.org/10.4314/tjpr.v15i2.13
23. Huang H-T. Cheng T-L. Lin S-Y. Ho C-J. Chyu JY. Yang R-S, et al. Osteoprotective roles of green tea catechins. Antioxidants. 2020; 9(11): 1136. https://doi.org/10.3390/antiox9111136
24. Novilla A. Djamhuri DS. Nurhayati B. Rihibiha DD. Afifah E. Widowati W. Anti-inflammatory properties of oolong tea (Camellia sinensis) ethanol extract and epigallocatechin gallate in LPS-induced RAW 264.7 cells. Asian Pacific Journal of Tropical Biomedicine. 2017; 7(11): 1005-9. https://doi.org/10.1016/j.apjtb.2017.10.002
25. di Giacomo V. Cataldi A. Sancilio S. Biological factors, metals, and biomaterials regulating osteogenesis through autophagy. International Journal of Molecular Sciences. 2020; 21(8): 2789. https://doi.org/10.3390/ijms21082789
26. Wiyono N. Uji Viabilitas Kolagen Sisik Ikan Gurami (Osphronemus Goramy) Terhadap Kultur Sel Osteoblas: Universitas Airlangga; 2019.
27. Buranaamnuay K. The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols. Open Veterinary Journal. 2021; 11(2): 251-69. https://doi.org/10.5455/OVJ.2021.v11.i2.9
28. Pascua-Maestro R. Corraliza-Gomez M. Diez-Hermano S. Perez-Segurado C. Ganfornina MD. Sanchez D. The MTT-formazan assay: Complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochemica. 2018; 120(3): 179-86. https://doi.org/10.1016/j.acthis.2018.01.006
29. Prahasanti C. Wulandari DT. Ulfa N. Viability test of fish scale collagen (Oshpronemus gouramy) on baby hamster kidney fibroblasts-21 fibroblast cell culture. Veterinary World. 2018; 11(4): 506. https://doi.org/10.14202/vetworld.2018.506-510
30. Stockert JC. Horobin RW. Colombo LL. Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochemica. 2018; 120(3): 159-67. https://doi.org/10.1016/j.acthis.2018.02.005
31. Yuliati Y. Mahdani FY. Margaretha SA. Yastuti WTP. Surboyo MDC. Aljunaid MA, et al. The EGCG and α-Mangosteen Stimulate SHED-IL10 and SHED-LL37 Metabolite Concentration. European Journal of Dentistry. 2023. https://doi.org/10.1055/s-0043-1761460
32. Miura‐Yura E. Tsunekawa S. Naruse K. Nakamura N. Motegi M. Nakai‐Shimoda H, et al. Secreted factors from cultured dental pulp stem cells promoted neurite outgrowth of dorsal root ganglion neurons and ameliorated neural functions in streptozotocin‐induced diabetic mice. Journal of Diabetes Investigation. 2020;11(1): 28-38. https://doi.org/10.1111/jdi.13085
33. Vu HT. Han M-R. Lee J-H. Kim J-S. Shin J-S. Yoon J-Y, et al. Investigating the effects of conditioned media from stem cells of human exfoliated deciduous teeth on dental pulp stem cells. Biomedicines. 2022; 10(4): 906. https://doi.org/10.3390/biomedicines10040906
34. Juliastuti WS. Budi HS. Maula LI. Fibroblast cell viability effectiveness between the highlands and lowlands coconut water (Cocos Nucifera L.). Journal of International Dental and Medical Research. 2016; 9(3): 237-41.
35. Sularsih. Soetjipto. Rahayu RP, editors. Cytotoxicity of combination chitosan with different molecular weight and ethanol extracted aloe vera using MTT Assay. IOP Conference Series: Earth and Environmental Science. 2018.
36. Zhang Q. Chen B. Yan F. Guo J. Zhu X. Ma S, et al. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. BioMed Research International. 2014; 2014. https://doi.org/10.1155/2014/284836
37. Zhang X. Xing H. Qi F. Liu H. Gao L. Wang X. Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. Nanotheranostics. 2020; 4(4): 242. https://doi.org/10.7150/ntno.46408
38. Puspitaningrum MS. Rahmadhani D. Rizqianti Y. Ridwan RD. Muhammad Ansori AN. Fadholly A, et al. Freeze-Dried Epigallocatechin-3-Gallate And Stem-Cells From Human Exfoliated Deciduous-Teeth Scaffold As The Biocompatible Anti-Relapse Material Post-Orthodontic Treatment: A Review. Biochemical and Cellular Archives. 2020; 20. https://doi.org/10.35124/bca.2020.20.S1.2935
39. Jin P. Li M. Xu G. Zhang K. Zheng L. Zhao J. Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Corrigendum in/10.3892/etm. 2021.9725. Experimental and Therapeutic Medicine. 2015; 10(2): 828-34. https://doi.org/10.3892/etm.2021.9725
40. Ohishi T. Goto S. Monira P. Isemura M. Nakamura Y. Anti-inflammatory action of green tea. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents). 2016; 15(2): 74-90. https://doi.org/10.2174/1871523015666160915154443
41. Puspitaningrum MS. Rahmadhani D. Rizqianti Y. Ridwan RD. Muhammad Ansori AN. Fadholly A, et al. The Combination Of Epigallocatechin-3-Gallate And Platelet Rich Plasma In Periodontal Ligament Stem Cells For Jaw Osteomyelitis Therapy: A Review. Biochemical and Cellular Archives. 2020; 20. https://doi.org/10.35124/bca.2020.20.S1.3015
42. Domazetovic V. Marcucci G. Iantomasi T. Brandi ML. Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clinical Cases in Mineral and Bone Metabolism. 2017; 14(2): 209. https://doi.org/10.11138/ccmbm/2017.14.1.209
43. Zhang J. Wu K. Xu T. Wu J. Li P. Wang H, et al. Epigallocatechin-3-gallate enhances the osteoblastogenic differentiation of human adipose-derived stem cells. Drug Design, Development and Therapy. 2019: 1311-21. https://doi.org/10.2147/DDDT.S192683
44. Jin P. Wu H. Xu G. Zheng L. Zhao J. Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study. Cell and Tissue Research. 2014; 356(2): 381-90. https://doi.org/10.1007/s00441-020-03370-y
45. Feng S. Liu J. Cheng B. Deng A. Zhang H. (-)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway. Experimental and Therapeutic Medicine. 2018; 15(5): 4284-90. https://doi.org/10.3892/etm.2018.5936
46. Hong SH. Lee MH. Koo M-A. Seon GM. Park YJ. Kim D, et al. Stem cell passage affects directional migration of stem cells in electrotaxis. Stem Cell Research. 2019; 38: 101475. https://doi.org/10.1016/j.scr.2019.101475
47. Lian J. Lv S. Liu C. Liu Y. Wang S. Guo X, et al. Effects of serial passage on the characteristics and cardiac and neural differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells. Stem Cells International. 2016; 2016. https://doi.org/10.1155/2016/9291013
48. Gunawardena TNA. Rahman MT. Abdullah BJJ. Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine. 2019; 13(4): 569-86. https://doi.org/10.1002/term.2806
49. Gu Y. Li T. Ding Y. Sun L. Tu T. Zhu W, et al. Changes in mesenchymal stem cells following long-term culture in vitro. Molecular Medicine Reports. 2016; 13(6): 5207-15. https://doi.org/10.3892/mmr.2016.5169