Author(s): Pradnya Uttam Wananje, Aishwarya S. Patil, B. S. Wakure, S. V. Pimpale

Email(s): wananjepradnya598@gmail.com , aishwarya06patil@gmail.com

DOI: 10.52711/0974-360X.2025.00497   

Address: Pradnya Uttam Wananje*, Aishwarya S. Patil*, B. S. Wakure, S. V. Pimpale
Department of Pharmaceutics, Vilasrao Deshmukh Foundation, Group of Institution VDF School of Pharmacy, Latur. Maharashtra, 413531, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
An interesting field of research that blends nanotechnology with medicine is the use of green metallic nanoparticles to treat neurological illnesses. Metallic nanoparticles have a number of benefits, including biocompatibility, low toxicity, and ease of synthesis, especially when they are produced using green synthesis techniques. The complex pathophysiologic disorder known as metabolic syndrome is mostly brought on by an imbalance in the amount of energy expended and calories consumed. Natural substances, particularly plant extracts, are thought to be a good alternative for treating metabolic disorders because of their low risk of adverse effects and their antioxidant, anti-inflammatory, and insulin-sensitizing qualities. However, these botanicals' poor solubility, low bioavailability, and volatility make them less effective. Due to these particular constraints, an effective system is required that lowers medication loss and degradation, gets rid of undesirable side effects, increases drug bioavailability and increases the amount of the drug that is deposited in the intended locations. Green-engineered nanoparticles have been created in the pursuit of a more efficient medication delivery mechanism, and this has improved the solubility, stability, bioavailability and biological distribution of plant-based products. The combination of metallic nanoparticles and plant extracts has aided in the creation of novel treatments for metabolic diseases such cancer, diabetes mellitus, obesity, neurodegenerative diseases, and non-alcoholic fatty liver. This review describes the pathophysiology of metabolic illnesses and how plant-based Nano medicine can treat them. However, it's crucial to remember that study is still needed to fully understand the potential advantages, safety, and efficacy of metallic nanoparticles in clinical applications. The field of Nano medicine, including the use of these particles for neurological illnesses, is still in its early stages. However, before these technologies are extensively used in clinical practice, obstacles such ensuring precise targeting, avoiding adverse effects, and addressing regulatory impediments must be addressed.


Cite this article:
Pradnya Uttam Wananje, Aishwarya S. Patil, B. S. Wakure, S. V. Pimpale. The Treatment of Neurological Disease via Green Metallic Nanoparticles. Research Journal of Pharmacy and Technology. 2025;18(7):3453-9. doi: 10.52711/0974-360X.2025.00497

Cite(Electronic):
Pradnya Uttam Wananje, Aishwarya S. Patil, B. S. Wakure, S. V. Pimpale. The Treatment of Neurological Disease via Green Metallic Nanoparticles. Research Journal of Pharmacy and Technology. 2025;18(7):3453-9. doi: 10.52711/0974-360X.2025.00497   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-7-77


REFERENCES:
1.    Moradi F, Dashti N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review. Naunyn-Schmiedeberg's Archives of Pharmacology. 2022; Feb; 395(2): 133-148. doi: https:doi.org/10.1007/s00210-021-02196-x 
2.    Rahman MM, Ferdous KS, Ahmed M. Emerging promise of nanoparticle based treatment for Parkinson’s disease. Biointerface Reserach in Applied Chemistry. 2020; 10: 7135–7151. doi:https://doi.org/10.33263/BRIAC106.71357151
3.    Rauf A, Badoni H, Abu-Izneid T, Rahman MM. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules. 2022; May 17; 27(10): 3194. doi: https://doi.org/10.3390/molecules27103194
4.    Rahman MM, Ferdous KS, Ahmed M. Hutchinson-Gilford progeria syndrome: an overview of the molecular mechanism, Pathophysiology and disease. Current Medicinal Chemistry. 2016; Mar 1; 23(9): 929–952. doi: 10.2174/1566523221666210303100805
5.    Mitra S, Lami MS, Ghosh A, Das R. Hormonal therapy for gynecological cancers: how far has science progressed toward clinical applications?. Cancers . 2022 Feb 1; 14(3): 759. doi: https://doi.org/10.3390/cancers14030759
6.    Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. International Journal of Pharmaceutics. 2006; May 18; 314(2): 120–126. doi: https://doi.org/10.1016/j.ijpharm.2005.09.040
7.    Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson’s disease. Progress in Neurobiology. 2007; Jan 1; 81(1): 29–44. doi: https://doi.org/10.1016/j.pneurobio.2006.11.009
8.    Tysnes, Storstein A. Epidemiology of Parkinson’s disease. Journal of Neural Transmission. 2017 Aug; 124:901–905. doi: https://doi.org/10.1007/s00702-017-1686-y
9.    Calzoni E, Cesaretti A, Polchi A. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. Journal of Functional Biomaterials. 2019 Jan 8; 10(1): 4. doi: https://doi.org/10.3390/jfb10010004
10.    Kim MH, Kim SH, Yang WM. Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimerʼs disease. Planta Medica. 2014 Oct; 80(15): 1249–1258. doi: 10.1055/s-0034-1383038
11.    Naoi M, Shamoto-Nagai M, Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurology. 2019 Jan 25; 14(1): FNL9. doi: https://doi.org/10.2217/fnl-2018-0028
12.    Abada E, Mashraqi A, Modafer Y. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi Journal of Biological Sciences. 2023; Nov 26; 103877. doi:https://doi.org/10.1016/j.sjbs.2023.103877
13.    Martin-Banderas L, Holgado MA, Durán-Lobato M. Role of nanotechnology for enzyme replacement therapy in lysosomal diseases. A focus on Gaucher’s disease. Current Medicinal Chemistry. 2016 Mar 1; 23(9): 929–952.
14.    Amarasinghe LD, Wickramarachchi PA, Aberathna AA. Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Heliyon. 2020; Jun 1; 6(6).
15.    Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Alvarez J. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020; Sept 7; 10(9): 1763. doi: https://doi.org/10.3390/nano10091763
16.    Jebril S, Jenana RK, Dridi C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Materials Chemistry and Physics. 2020; Jul 1; 248: 122898. doi: https://doi.org/10.1016/j.matchemphys.2020.122898
17.    Nath D, Banerjee P. Green nanotechnology–a new hope for medical biology. Environmental Toxicology and Pharmacology. 2013; Nov 1; 36(3): 997–1014. doi: https://doi.org/10.1016/j.etap.2013.09.002
18.    Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science. 2011; Dec 12; 169(2): 59-79. doi: https://doi.org/10.1016/j.cis.2011.08.004
19.    Rao KJ, Korumilli T, Jakkala S, Singh K. Optimization of the one-step green synthesis of silver and gold nanoparticles using aqueous Athyrium filix femina extract using the taguchi method. BioNanoScience. 2021; Dec; 11: 915-922. doi: https://doi.org/10.1007/s12668-021-00909-3
20.    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR. Structure and function of the blood–brain barrier. Neurobiology of Disease. 2010; Jan 1; 37(1): 13-25. doi: https://doi.org/10.1016/j.nbd.2009.07.030
21.    Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. The FASEB Journal. 2005; Mar; 19(3): 311-330. doi: https://doi.org/10.1096/fj.04-2747rev
22.    Kong SD, Lee J, Ramachandran S. Magnetic targeting of nanoparticles across the intact blood–brain barrier. Journal of Controlled Release. 2012; Nov 28; 164(1): 49-57. doi: https://doi.org/10.1016/j.jconrel.2012.09.021
23.    Smith MW, Gumbleton M. Endocytosis at the blood–brain barrier: from basic understanding to drug delivery strategies. Journal of Drug Targeting. 2006; Jan 1; 14(4): 191-214. doi: https://doi.org/10.1080/10611860600650086
24.    Rahman MM, Islam MR, Shohag S, Hossain ME. The multifunctional role of herbal products in the management of diabetes and obesity: a comprehensive review. Molecules. 2022; Mar 6; 27(5): 1713. doi: https://doi.org/10.3390/molecules27051713
25.    Bengmark S. Curcumin, An atoxic antioxidant and natural NfkB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: A shield against acute and chronic diseases. Journal of Parenteral and Enteral Nutrition. 2006; Jan; 30(1): 45-51. doi:https://doi.org/10.1177/014860710603000145
26.    Xu J, Wold EA, Ding Y, Shen Q. Therapeutic potential of oridonin and its analogs: from anticancer and antiinflammation to neuroprotection. Molecules. 2018; Feb 22; 23(2): 474. doi: https://doi.org/10.3390/molecules23020474
27.    Hajialyani M, Hosein Farzaei M, Echeverría J. Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules. 2019; Feb 12; 24(3): 648. doi: https://doi.org/10.3390/molecules24030648
28.    Lausanne EP. On the Way to Nanotheranostics: Diagnosing and Treating Diseases Simultaneously. 2021; May 15.
29.    Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. The Journal of Cell Biology. 1967; Jul 1; 34(1): 207-217. doi: 10.1083/jcb.34.1.207.
30.    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR. Structure and function of the blood–brain barrier. Neurobiology of Disease. 2010; Jan 1; 37(1): 13-25. doi: 10.1016/j.nbd.2009.07.030.
31.    Dallasta LM, Pisarov LA, Esplen JE . Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. The American Journal of Pathology. 1999; Dec 1; 155(6): 1915-1927. doi:10.1016/S0002-9440(10)65511-3
32.    McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS. Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Research. 2012; Jul 15; 72(14): 3652-3663.  doi: 10.1158/0008-5472.CAN-12-0128
33.    Henson JW, Cordon-Cardo C, Posner JB. P-glycoprotein expression in brain tumors. Journal of Neuro-oncology. 1992; Sep; 14: 37-43. doi:10.1007/BF00170943
34.    Morillas-Becerril L, Peta E, Gabrielli L, Russo V. Multifunctional, CD44v6-targeted ORMOSIL nanoparticles enhance drugs toxicity in cancer cells. Nanomaterials. 2020; Feb 10; 10(2): 298. doi:10.3390/nano10020298
35.    Mohammadpour R, Yazdimamaghani M, Cheney DL, Jedrzkiewicz J. Subchronic toxicity of silica nanoparticles as a function of size and porosity. Journal of Controlled Release. 2019; Jun 28; 304: 216-232. doi: 10.1016/j.jconrel.2019.04.041
36.    Mendonça MC, Soares ES, de Jesus MB. PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: an in vitro and in vivo study. Molecular Pharmaceutics. 2016; Nov7; 13(11): 3913-3924. doi:10.1021/acs.molpharmaceut.6b00696
37.    Chow SC. Bioavailability and bioequivalence in drug development. Wiley Interdisciplinary Reviews: Computational Statistics. 2014; Jul; 6(4): 304-312. doi: https://doi.org/10.1002/wics.1310 
38.    Bray F, Ferlay J, Soerjomataram I, Siegel RL. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians. 2018; Nov; 68(6): 394-424.  doi: https:// doi.org/10.3322/caac.21492 
39.    Nance E, Zhang C, Shih TY. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS nano. 2014 Oct 28;8(10):10655-10664. 
40.    Mangraviti A, Tzeng SY, Kozielski KL. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano. 2015; Feb 24; 9(2): 1236-1249. 
41.    Khalil AT, Ovais M, Ullah I. Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine. 2017; Aug 1; 12(15): 1767-1789. doi: https://doi.org/10.2217/nnm-2017-0124
42.    Suganthy N, Sri Ramkumar V, Pugazhendhi A. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environmental Science and Pollution Research. 2018; Apr; 25: 10418-10433. doi: https://doi.org/10.1007/s11356-017-9789-4
43.    Soliman HM, Ghonaim GA, Gharib SM, Chopra H. Exosomes in Alzheimer’s disease: from being pathological players to potential diagnostics and therapeutics. International Journal of Molecular Sciences. 2021; Oct 6; 22(19): 10794. doi: https://doi.org/10.3390/ijms221910794
44.    Tran PH, Xiang D, Tran TT. Exosomes and nanoengineering: a match made for precision therapeutics. Advanced  Materials. 2020; May; 32(18): 1904040. doi: https://doi.org/10.1002/adma.201904040
45.    Kandell RM, Waggoner LE, Kwon EJ. Nanomedicine for acute brain injuries: insight from decades of cancer nanomedicine. Molecular Pharmaceutics. 2020; Jun 25; 18(2): 522-538.  


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available