Author(s):
M. N. Amin, N. Permatasari
Email(s):
m_nurul_amin.fkg@unej.ac.id
DOI:
10.52711/0974-360X.2023.00023
Address:
M. N. Amin1*, N. Permatasari2
1Department of Biomedical Science, Faculty of Dentistry, Jember University, Kalimantan Street, No. 37, Jember, 68121, Indonesia.
2Pharmachology Department, Faculty of Medicine, Universitas Brawijaya, Veteran Street, Malang, 65145, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Alveolar bone tissue constantly undergoes remodeling through new bone formation and bone resorption. Osteoclasts originated from hematopoietic precursor cells and monocytes/macrophage lineage. In particular it will differentiate into mononuclear preosteoclasts and will merge into multinucleated osteoclast. Osteoblasts originated from undifferentiated mesenchymal stem cells. Osteoprogenitor cells evolved into preosteoblasts, and then into osteoblasts and osteocytes latter, which has the capability of bone mineralization and calcification. Orthodontic mechanical force responded directly by MSC to perform self-renewal and osteogenic differentiation, whereas HSC respond to mechanical force mediated by osteoblastic lineage cell in osteoclastic differentiation.
Cite this article:
M. N. Amin, N. Permatasari. The Role of Stem Cell on Orthodontic Tooth Movement Induced-Alveolar Bone Remodeling. Research Journal of Pharmacy and Technology 2023; 16(1):123-8. doi: 10.52711/0974-360X.2023.00023
Cite(Electronic):
M. N. Amin, N. Permatasari. The Role of Stem Cell on Orthodontic Tooth Movement Induced-Alveolar Bone Remodeling. Research Journal of Pharmacy and Technology 2023; 16(1):123-8. doi: 10.52711/0974-360X.2023.00023 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-1-23
REFERENCES:
1. Krishnan V. Davidovitch Z. On A Path to Unfolding The Biological Mechanisms of Orthodontic Tooth Movement. Journal of Dental Research. 2009; 88: 597 – 608.https://doi.org/10.1177/0022034509338914
2. Senba M. KawaiK. Mori N. Pathogenesis of Metastatic Calcification and Acute Pancreatitis in Adult T-Cell Leukemia under Hypercalcemic State. Leukemia Research and Treatment2012: 1- 10.https://doi.org/10.1155/2012/128617
3. Menaa C. KuriharaN.RoodmanGD. CFU-GM derived cells form osteoclasts at a very high efficiency. Biochemical and Biophysical Research Communications.2000; 267(3): 943–946. https://doi.org/10.1006/bbrc.1999.2042
4. Lacey DL. TimmsE. Tan HL. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998; 93(2): 165–176. https://doi.org/10.1016/s0092-8674(00)81569-x
5. Suda, MJATTakahashi N. Contributions to osteoclast biology from Japan. Proc JpnAcad Ser B Phys Biol Sci. 2008 Dec; 84(10): 419–438.
1. https://doi.org/10.2183/pjab/84.419
6. Blair JM. Zheng Y. DunstanCR. RANK ligand. Int J Biochem Cell Biol. 2007;39(6):1077-81. https://doi.org/10.1016/j.biocel.2006.11.008
7. Selvi ST. Stem Cell Therapy. Int. J. Adv. Nur. Management. 2017; 5(4): 361-364. https://doi.org/ 10.5958/2454-2652.2017.00077.4
8. Ramadhani NF.Nugraha AP. Ihsan IS. Agung YO.Rantam FA.Ernawati DS.Rini RidwanD. Narmada IB.AnsoriANM.HayazaS. NoorTNEBTA. Gingival Medicinal Signaling Cells Conditioned Medium effect on the Osteoclast and Osteoblast number in Lipopolysaccharide-induced Calvaria Bone Resorption in Wistar Rats’ (Rattus novergicus). Research Journal of Pharmacy and Technology. 2021; 14(10):5232-7. https://doi.org/10.52711/0974-360X.2021.00911
9. Arthur A.Zannettino A.Gronthos S. The Therapeutic Applications of Multipotential Mesenchymal/Stromal Stem Cells in Skeletal Tissue Repair. J Cell Physiol. 2009 Feb;218(2):237-45. https://doi.org/10.1002/jcp.21592
10. Kumar RK. Research J. Pharm. and Tech 2018; 11(4): 1530-1534. https://doi.org/10.5958/0974-360X.2018.00285.8
11. DikshaSP. Role of Stem Cells in treatment of different Diseases. Research J. Pharm. and Tech 2018; 11(8): 3667-3678. https://doi.org/10.5958/0974-360X.2018.00674.1
12. Jones E. Yang X. Mesenchymal stem cells and bone regeneration: current status. Injury. 2011 Jun;42(6):562-8. https://doi.org/10.1016/j.injury.2011.03.030
13. Mansour A.Abou-Ezzi G.Sitnicka E. Jacobsen SE.Wakkach A. Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012 Mar 12;209(3):537-49. https://doi.org/10.1084/jem.20110994
14. KumariR. Stem Cell. Int. J. Nur. Edu. and Research. 2018; 6(4):443-446. https://doi.org/10.5958/2454-2660.2018.00107.2
15. Salazar KD. Lankford SM. Brody AR. Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2009 Nov;297(5):L1002-11. https://doi.org/10.1152/ajplung.90347.2008
16. Wei X. Yang X. Han ZP. Qu FF. Shao L. Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013 Jun;34(6):747-54. https://doi.org/10.1038/aps.2013.50
17. Manjusha P. Yeole, Shailju G. Gurunani, Yogesh N. Gholse. Stem Cell Techniques. Research J. Pharm. and Tech. 6(3): March 2013; Page 304-306.
18. Septiana P. Suciadi, Alexander P. Nugraha, Diah S. Ernawati5, Nurina F. Ayuningtyas5, Ida B. Narmada, Chiquita Prahasanti, AristikaDinaryanti, IgoSyaiful Ihsan, Eryk Hendrinto, Helen Susilowati, Fedik Abdul Rantam. The Efficacy of Human Dental Pulp Stem Cells in regenerating Submandibular Gland Defects in Diabetic Wistar Rats (Rattus novergicus). Research J. Pharm. and Tech. 2019; 12(4):1573-1579. https://doi.org10.5958/0974-360X.2019.00261.0
19. Timothy CN.Samyuktha PS. BrundhaMP. Dental pulp Stem Cells in Regenerative Medicine – A Literature Review. Research J. Pharm. and Tech 2019; 12(8):4052-4056. https://doi.org/10.5958/0974-360X.2019.00698.
20. NugrahaAP.RezkitaF.PuspitaningrumMS.LuthfimaidahMS. NarmadaIB.PrahasantiC.ErnawatiDS.RantamFA. Gingival Mesenchymal Stem Cells and Chitosan Scaffold to Accelerate Alveolar Bone Remodelling in Periodontitis: A Narrative Review. Research J. Pharm. and Tech 2020; 13(5):2502-2506. https://doi/10.5958/0974-360X.2020.00446.1
21. Balaji S. Umbilical cord blood as a source of stem cells. Research J. Pharm. and Tech. August, 2015; 8(8):1093-1095. https://doi.org/10.5958/0974-360X.2015.00190.0
22. AzeemS. RajS. KajalK. ThiagarajanP. Umbilical Cord Stem Cells: A Review. Research J. Pharm. and Tech 2018; 11(6): 2709-2714. https://doi.org/10.5958/0974-360X.2018.00500.0
23. Fedik AR.NugrahaAP.FerdiansyahF.Purwati P.Bumi C.SusilowatiH.HendriantoE.NovembriD.SurotoUH.SumartonoC.SetiawatiR.PrakoeswaCR.IndramayaDM. A Potential Differentiation of Adipose and Hair Follicle-derived Mesenchymal Stem Cells to Generate Neurons Induced with EGF, FGF, PDGF and Forskolin. Research J. Pharm. and Tech. 2020; 13(1): 275-281.https://doi.org/10.5958/0974-360X.2020.00056.6
24. Dominici M. Le Blanc K. Mueller I.Slaper-Cortenbach I. Marini F. Krause D. Deans R. Keating A.ProckopDj. Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. https://doi.org/10.1080/14653240600855905
25. Lv FJ. Tuan RS. Cheung KM. Leung VY. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014 Jun;32(6):1408-19. https://doi.org/10.1002/stem
26. Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015 Apr 23;125(17):2605-13. https://doi.org/10.1182/blood-2014-12-570200
27. Dzierzak E. Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008 Feb;9(2):129-36. https://doi.org/10.1038/ni1560
28. Krause DS.Theise ND. Collector MI.Henegariu O. Hwang S. Gardner R.Neutzel S.Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001 May 4;105(3):369-77. https://doi.org/10.1016/s0092-8674(01)00328-2
29. Feller L.Khammissa RA. Schechter I.Thomadakis G. Fourie J.Lemmer J. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces. ScientificWorldJournal. 2015;2015:876509. doi: 10.1155/2015/876509
30. Zhang P. Wu Y. Jiang Z. Jiang L. Fang B. Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling. Int J Mol Med. 2012 Jun;29(6):1083-9. https://doi.org/10.3892/ijmm.2012.934
31. Zhu J. Zhang X. Wang C. Peng X. Zhang X. Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci. 2008 Dec;9(12):2322-2332. Httpdz;//doi.org/10.3390/ijms9122322
32. Sun Y. Chen CS. Fu J. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys. 2012;41:519-42. https://doi.org/10.1146/annurev-biophys-042910-155306
33. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003 Apr 15;116(Pt 8):1409-16. https://doi.org/10.1242/jcs.00373
34. Webb DJ.Donais K. Whitmore LA. Thomas SM. Turner CE. Parsons JT. Horwitz AF. FAK-Srcsignalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 2004 Feb;6(2):154-61. https://doi.org/10.1038/ncb1094
35. Paling NR.Wheadon H. Bone HK. Welham MJ. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem. 2004 Nov 12;279(46):48063-70. https://doi.org/10.1074/jbc.M406467200
36. Storm MP. Bone HK. Beck CG.Bourillot PY. Schreiber V. Damiano T. Nelson A.Savatier P. Welham MJ. Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem. 2007 Mar 2;282(9):6265-73. https://doi.org/10.1074/jbc.M610906200
37. DuFort CC.Paszek MJ. Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011 May;12(5):308-19. https://doi.org/10.1038/nrm3112
38. Arnsdorf EJ.Tummala P. Kwon RY. Jacobs CR. Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci. 2009 Feb 15;122(Pt 4):546-53. https://doi.org/10.1242/jcs.036293
39. Dupont S. Morsut, L. Aragona M. et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474:179–183. https://doi.org/10.1038/nature10137
40. Crampton SP. WuB. ParkEJ. Jai-Hyun K. Solomon C. WatermanML. HughesCCW. Integration of the β-catenin-dependent wnt pathway with integrin signaling through the adaptor molecule grb2. PLoS One. 2009; 4(11): e7841.https://doi.org/10.1371/journal.pone.0007841
41. Kolf CM. Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9(1):204. https://doi.org/10.1186/ar2116
42. Blank U. Karlsson G. Karlsson S. Signaling pathways governing stem-cell fate. Blood. 2008 Jan 15;111(2):492-503. https://doi.org/10.1182/blood-2007-07-075168
43. James D. Levine AJ. Besser D.Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005 Mar;132(6):1273-82. https://doi.org/10.1242/dev.01706
44. Moustakas A.Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005 Aug 15;118(Pt 16):3573-84. https://doi.org/10.1242/jcs.02554
45. Hayakawa K. Tatsumi H.Sokabe M. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci (2008) 121 (4): 496–503.https://doi.org/10.1242/jcs.022053.
46. Maeda T. Sakabe T. Sunaga A. Sakai K. Rivera AL. Keene DR. Sasaki T. Stavnezer E. Iannotti J. Schweitzer R. Ilic D. Baskaran H. Sakai T. Conversion of mechanical force into tgf-β-mediated biochemical signals. Curr Biol. 2011 Jun 7;21(11):933-41. https://doi.org/10.1016/j.cub.2011.04.007.
47. Sun, S. Liu YM. Lipsky S. Cho M. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J. 2007 May;21(7):1472-80. doi: 10.1096/fj.06-7153com
48. Kim TJ.Seong JH. Ouyang MX. Sun J. Lu SY. et al. Substrate rigidity regulates ca2+ oscillation via rhoa pathway in stem cells. J Cell Physiol. 2009 Feb; 218(2): 285–293. https://doi.org/10.1002/jcp.21598.
49. Martin TJ. Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005 Feb;11(2):76-81. https://doi.org/10.1016/j.molmed.2004.12.004.
50. Méndez-Ferrer S. Michurina T. Ferraro F. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010). https://doi.org/10.1038/nature09262
51. ZhongJ. RajagopalanS. Dipeptidyl peptidase-4 regulation of SDF-1/CXCR4 axis: implications for cardiovascular disease.Front Immunol. 2015; 6: 477. https://doi.org/10.3389/fimmu.2015.00477
52. Arai F. HiraoA. OhmuraM. SatoH. Matsuoka S. TakuboK. Ito K. KohGY.SudaT. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004 Jul 23;118(2):149-61. https://doi.org/10.1016/j.cell.2004.07.004
53. Soysa NS. AllesN. AokiK.OhyaK. Osteoclast Formation and Differentitation: An Overview. J Med Dent Sci. 2012 Nov 8;59(3):65-74. PMID: 23897045.
54. Dar A. KolletO. LapidotT. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol. 2006 Aug;34(8):967-75. https://doi.org/10.1016/j.exphem.2006.04.002
55. Lymperi, S. ErsekA. FerraroF. DazziF. HorwoodNJ. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood. 2011 Feb 3;117(5):1540-9. https://doi.org/10.1182/blood-2010-05-282855.
56. Blin-Wakkach C. WakkachA. Rochet N. Carle GF. Characterization of a novel bipotent hematopoietic progenitor population in normal and osteopetrotic mouse. J Bone Miner Res. 2004 Jul;19(7):1137-43. https://doi.org/10.1359/JBMR.040318