Author(s):
Theresia Indah Budhy, Pramesvara Naori, Dalila Ridhatillah, Laurencia Dwiamanda, Mileniatri Evriany
Email(s):
theresia-i-b-s@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2023.00007
Address:
Theresia Indah Budhy1*, Pramesvara Naori2, Dalila Ridhatillah2, Laurencia Dwiamanda2, Mileniatri Evriany2
1Department of Oral and Maxillofacial Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
2Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Cancer cases have increased with 18,1 million new cases and 9,6 million deaths in 2018. The main problem of chemotherapy is the lack of selectivity and drug resistance. Moringa oleifera leaves as anti-cancer offer minimal side effects. A nano-sized substance facilitates direct penetration into the target cell. This study attempts to prove the potential of chitosan-based Moringa oleifera leaves extract nanoparticles as an anti-cancer in cancer cells (in vitro). Chitosan-based Moringa oleifera leaves extract nanoparticles (Nano-MOLE) were made using ionic gelation method, nanoparticles were measured using Mastersizer, Nano-MOLE phytochemical content seen from Thin Layer Chromatography (TLC) test, froth test, and anhydrous acid test, IC50 values were obtained from MTT assay, and caspase-3 expression with immunofluorescence. Chitosan-based Moringa oleifera leaves extract nanoparticles with a size range of 0.01 micron-0.5 micron (10-500 nm) and contain phytochemicals such as alkaloids and terpenoids, and saponins. Nano-MOLE were found to have a cytotoxic effect on the cell line with an IC50 value of 287, 13 µg/mL and there was caspase-3 expression. Nano-MOLE is able to increase the expression of caspase-3 in HeLa cells line.
Cite this article:
Theresia Indah Budhy, Pramesvara Naori, Dalila Ridhatillah, Laurencia Dwiamanda, Mileniatri Evriany. The Potency of Chitosan-Based Moringa oleifera Leaves Extract Nanoparticles as Anti-Cancer Agent. Research Journal of Pharmacy and Technology 2023; 16(1):35-0. doi: 10.52711/0974-360X.2023.00007
Cite(Electronic):
Theresia Indah Budhy, Pramesvara Naori, Dalila Ridhatillah, Laurencia Dwiamanda, Mileniatri Evriany. The Potency of Chitosan-Based Moringa oleifera Leaves Extract Nanoparticles as Anti-Cancer Agent. Research Journal of Pharmacy and Technology 2023; 16(1):35-0. doi: 10.52711/0974-360X.2023.00007 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-1-7
REFERENCES:
1. Sung H. Ferlay J. Siegel RL. Laversanne M. Soerjomataram I. Jemal A. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 2021;71(3):209–249.doi.org/10.3322/caac.21660.
2. Gondhowiardjo S. Christina N. Ganapati NPD. Hawariy S. Radityamurti F. Jayalie VF. et al. Five-Year Cancer Epidemiology at the National Referral Hospital: Hospital-Based Cancer Registry Data in Indonesia. JCO Global Oncology. 2021;7190–203.doi.org/10.1200/GO.20.00155.
3. Ling DC. Bakkenist CJ. Ferris RL. Clump DA. Role of Immunotherapy in Head and Neck Cancer. Seminars in Radiation Oncology.2018;28(1):12–16.doi.org/10.1016/j.semradonc.2017.08.009.
4. Masclef L. Dehennaut V. Mortuaire M. Schulz C. Leturcq M. Lefebvre T. et al. Cyclin D1 Stability is Partly Controlled by O-GlcNAcylation. Frontiers in Endocrinology. 2019;10106.doi.org/10.3389/fendo.2019.00106.
5. Padma VV. An Overview of Targeted Cancer Therapy. BioMedicine. 2015;5(4):19.doi.org/10.7603/s40681-015-0019-4.
6. Proboningrat A. Fadholly A. Iskandar RPD. Achmad AB. Rantam FA. Sudjarwo SA. The Potency of Chitosan-Based Pinus Merkusii Bark Extract Nanoparticles as Anti-Cancer on HeLa Cell Lines. Veterinary World. 2019;12(10):1616–1623.doi.org/10.14202/vetworld.2019.1616-1623.
7. Dwira S. Fadilah MR. Azizah NN. Putrianingsih R. Kusmardi K. Cytotoxic Activity of Ethanol and Ethyl Acetate Extract of Kenikir (Cosmos Caudatus) against Cervical Cancer Cell Line (HELA). Research Journal of Pharmacy and Technology. 2019;12(3):1225–1229.doi.org/10.5958/0974-360X.2019.00203.8.
8. Prasannaraj G. Sahi S. Benelli G. Venkatachalam P. Coating with Active Phytomolecules Enhances Anticancer Activity of Bio-Engineered Ag Nanocomplex. 2017;28:2349-2367.doi.org/10.1007/s10876-017-1227-8.
9. Rezkita F. Wibawa KGP. .Nugraha AP. Curcumin Loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review. Research Journal of Pharmacy and Technology. 2020;13(2):1039–1042.doi.org/10.5958/0974-360X.2020.00191.2.
10. Abd Rani NZ. Husain K. Kumolosasi E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Frontiers in Pharmacology. 2018;9.doi.org/10.3389/fphar.2018.00108
11. Jaitak, D. Nacchammai K. Pavithra K. Keerthi GSN.Sathesh KS. Polymeric Nanoparticles for Anti-Cancer Treatment- A Review of Its Mechanisms. Research Journal of Pharmacy and Technology. 2021;14 (3):1747–1754.doi.org/10.5958/0974-360X.2021.00311.5.
12. Abirla M. Rajakumari K. Nanotherapy for Cancer – A Review. Research Journal of Pharmacy and Technology. 2020;13(3):1575–1579.doi.org/10.5958/0974-360X.2020.00285.1.
13. Edwinanto L. Septiadi E. Nurfazriah L. Anastasya K. Pranata N. Phytochemical Features of Moringa Oleifera Leaves as Anticancer. Journal of Medicine & Health. 2018;2.doi.org/10.28932/jmh.v2i1.745.
14. Gopalakrishnan L. Doriya K. Kumar DS. Moringa Oleifera: A Review on Nutritive Importance and Its Medicinal Application. Food Science and Human Wellness. 2016;5(2):49–56.doi.org/10.1016/j.fshw.2016.04.001.
15. Thoppil RJ. Bishayee A. Terpenoids as Potential Chemopreventive and Therapeutic Agents in Liver Cancer. World Journal of Hepatology. 2011;3 (9):228–249.doi.org/10.4254/wjh.v3.i9.228.
16. Lin M. Zhang J. Chen X. Bioactive Flavonoids in Moringa Oleifera and Their Health-Promoting Properties. Journal of Functional Foods. 2018;47:469–479.doi.org/10.1016/j.jff.2018.06.011.
17. Weerapreeyakul N. Nonpunya A. Barusrux S. Thitimetharoch T. Sripanidkulchai B. Evaluation of The Anticancer Potential of Six Herbs Against A Hepatoma Cell Line. Chinese Medicine. 2012;7:15.doi.org/10.1186/1749-8546-7-15
18. Mitsiogianni M. Koutsidis G. Mavroudis N. Trafalis DT. Botaitis S. Franco R. et al. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants. 2019;8(4):106.doi.org/10.3390/antiox8040106.
19. Salucci S. Burattini S. Buontempo F. Orsini E. Furiassi L. Mari M. et al. Marine Bisindole Alkaloid: A Potential Apoptotic Inducer in Human Cancer Cells. European Journal of Histochemistry : EJH. 2018;62(2):2881.doi.org/10.4081/ejh.2018.2881.
20. Pistritto G. Trisciuoglio D. Ceci C. Garufi A. D’Orazi G. Apoptosis as Anticancer Mechanism: Function and Dysfunction of Its Modulators and Targeted Therapeutic Strategies. Aging. 2016;8 (4):603–619.doi.org/10.18632/aging.100934.
21. Mohammad RM. Muqbil I. Lowe L. Yedjou C. Hsu HY. Lin LT. et al. Broad Targeting of Resistance to Apoptosis in Cancer. Seminars in Cancer Biology.2015;35 SupplS78–S103.doi.org/10.1016/j.semcancer.2015.03.001.
22. Karpagam T. Firdous J. Revathy. Priya S. Varalakshmi B. Gomathi S. et al. Anti-Cancer Activity of Aloe Vera Ethanolic Leaves Extract against In Vitro Cancer Cells. Research Journal of Pharmacy and Technology. 2019;12(5):2167–2170.doi.org/10.5958/0974-360X.2019.00360.3.
23. Capco DG. Chen Y. SpringerLink (Online service). Nanomaterial Impacts on Cell Biology and Medicine. Springer Netherlands : Imprint : Springer, Dordrecht. 2014.doi.org/10.1007/978-94-017-8739-0
24. Inayati F. Narmada IB. Ardani IGAW. Nugraha AP. Rahmawati D. Post Oral Administration of Epigallocatechin Gallate from Camelia Sinensis Extract Enhances Vascular Endothelial Growth Factor and Fibroblast Growth Factor Expression during Orthodontic Tooth Movement in Wistar Rats. Journal of Krishna Institute of Medical Sciences University. 2020;9 (1):58–65.
25. Triwardhani A. Anggitia C. Ardani IGAW. Nugraha AP. Riawan W. The Increased Basic Fibroblast Growth Factor Expression and Osteoblasts Number Post Bifidobacterium Bifidum Probiotic Supplementation during Orthodontic Tooth Movement in Wistar Rats. Journal of Pharmacy and Pharmacognosy Research.2021;9(4):446-453.
26. Wang Z. Guo W. Kuang X. Hou S. Liu H. Nanopreparations for Mitochondria Targeting Drug Delivery System: Current Strategies and Future Prospective. Asian Journal of Pharmaceutical Sciences. 2017;12(6):498–508.doi.org/10.1016/j.ajps.2017.05.006.
27. Nugraha AP. Rezkita F. Puspitaningrum MS. Luthfimaidah MS. Narmada IB. Prahasanti C. et al. Gingival Mesenchymal Stem Cells and Chitosan Scaffold to Accelerate Alveolar Bone Remodelling in Periodontitis: A Narrative Review. Research Journal of Pharmacy and Technology. 2020;13(5):2502–2506.doi.org/10.5958/0974-360X.2020.00446.1.
28. Chauhan M. Garg V. Zia G. Dutt R. Potential Role of Phytochemicals of Fruits and Vegetables in Human Diet. Research Journal of Pharmacy and Technology. 2020;13(3):1587–1591.doi.org/10.5958/0974-360X.2020.00287.5.
29. Rantam FA. Nugraha AP. Ferdiansyah F. Purwati P. Bumi C. Susilowati H. et al. A Potential Differentiation of Adipose and Hair Follicle-Derived Mesenchymal Stem Cells to Generate Neurons Induced with EGF, FGF, PDGF and Forskolin. Research Journal of Pharmacy and Technology .2020;13 (1):275–281.doi.org/10.5958/0974-360X.2020.00056.6.
30. Lu JJ. Bao JL. Chen XP. Huang M. Wang YT. Alkaloids Isolated from Natural Herbs as the Anticancer Agents. Evidence-Based Complementary and Alternative Medicine: eCAM. 2012;2012:485042.doi.org/10.1155/2012/485042.
31. Mondal R. Dey D. Maity S. Giri TK. Recent Advancement of Ionic Polysaccharide-Based Nanoparticles for Cancer Therapy. Research Journal of Pharmacy and Technology. 2021;14(2):1122–1130.doi.org/10.5958/0974-360X.2021.00202.X.
32. Rao CV. Manimaran V. Damodharan N. Review on Methods, Applications and Role of Gold Nano Particles in Cancer Therapy. Research Journal of Pharmacy and Technology. 2020;13 (8):3963–3968.doi.org/10.5958/0974-360X.2020.00701.5.
33. Narmada IB. Putri P. Lucynda L. Triwardhani A. Ardani IG. Nugraha AP. Effect of Caffeic Acid Phenethyl Ester Provision on Fibroblast Growth Factor-2, Matrix Metalloproteinase-9 Expression, Osteoclast and Osteoblast Numbers during Experimental Tooth Movement in Wistar Rats (Rattus norvegicus). European Journal of Dentistry. 2021;15(2):295-301.doi.org/10.1055/s-0040-1718640.
34. Narmada IB. Laksono V. Nugraha AP. Ernawati DS. Winias S. Prahasanti C. et al. Regeneration of Salivary Gland Defects of Diabetic Wistar Rats Post Human Dental Pulp Stem Cells Intraglandular Transplantation on Acinar Cell Vacuolization and Interleukin-10 Serum Level. Associação de Apoio à Pesquisa em Saúde Bucal. 2020;19(e5002).doi.org/10.4034/PBOCI.2019.191.144.
35. Kanyalkar TM. Butle SR. Chamwad GN. Application of Nanotechnology in Cancer Treatment. Research Journal of Pharmacy and Technology. 2012;5 (9):1161–1167.
36. Yang H. Dou Q. Targeting Apoptosis Pathway with Natural Terpenoids: Implications for Treatment of Breast and Prostate Cancer. Current drug targets. 2010;11:733–744.doi.org/10.2174/138945010791170842.
37. Bhattacharya R. Naitam P. Green Anticancer Drugs – An Review. Research Journal of Pharmacognosy and Phytochemistry. 2019;11(4):231–243.doi.org/10.5958/0975-4385.2019.00040.2.
38. Suciadi SP. Nugraha AP. Ernawati DS. Ayuningtyas NF. Narmada IB. Prahasanti C. et al. The Efficacy of Human Dental Pulp Stem Cells in Regenerating Submandibular Gland Defects in Diabetic Wistar Rats (Rattus Novergicus). Research Journal of Pharmacy and Technology. 2019;12(4):1573–1579.doi.org/10.5958/0974-360X.2019.00261.0.