Author(s):
Muhammad Riza Hafidz Bahtiar, Amelia Aisyiah Anwar, Fitrul Azmi Eka Farhana, Shelsabilla Prameswari, Elly Munadziroh
Email(s):
elly-m@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2023.00078
Address:
Muhammad Riza Hafidz Bahtiar1, Amelia Aisyiah Anwar1, Fitrul Azmi Eka Farhana2, Shelsabilla Prameswari1, Elly Munadziroh3
1Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Postgraduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Background: More than 200 million people worldwide diagnosed with osteoporosis, a degenerative condition characterized by decreasing bone mineral density. Although oral bisphosphonates are the most used form of treatment for osteoporosis, they have the potential to result in osteonecrosis. Osthole bone marrow mesenchymal stem cells (OBMMSCs) are combination of bone marrow mesenchymal stem cells (BMMSCs) and coumarin derivatives from Cnidium monnieri act as anti-inflammatory and anti-osteoporosis agents. The use of OBMMSCs in triad tissue engineering necessitates using a growth factor and a scaffold, which are combined with BMP-9 incorporated in carbon-based scaffold namely nano hydroxyapatite/collagen I/multi-walled carbon nanotubes (nHA/ColI/MWCNTs) scaffold to promote better loading. The combination of OBMMSCs and BMP-9 loaded nHA/ColI/MWCNTs scaffold has potential to increase OBMMSC differentiation into osteoblasts, resulting in increased bone remodeling and a better outcome in osteoporosis therapy. Purpose: To analyze the potential of OBMMSCs and BMP-9 loaded nHA/ColI/MWCNTs scaffolds as osteoporosis therapy. Discussion: Osthole enhances BMMSCs differentiation via activation of cAMP/CERK and Wnt/ß-catenin/BMP signaling pathways. Osthole increases alkaline phosphatase (ALP) expression that stimulates osteogenesis. Meanwhile, in the Wnt/ß-catenin-BMP pathway, osthole initiates Wnt binding to the Fz receptor so that ß-catenin expression increases. ß-catenin, together with Runx2, reduces the expression of GSK-3ß, thereby increasing BMMSCs differentiation into osteoblasts. BMP-9 loaded nHA/COLI/MWCNTS scaffold promotes the differentiation of BMMSCs into osteoblasts by increasing the supply of collagen and calcium, as well as angiogenesis, which increases vascularity. Conclusion: OBMMSCs and BMP-9 loaded nHA/ColI/MWCNT scaffold have the potential to treat osteoporosis.
Cite this article:
Muhammad Riza Hafidz Bahtiar, Amelia Aisyiah Anwar, Fitrul Azmi Eka Farhana, Shelsabilla Prameswari, Elly Munadziroh. An insight of Osthole, Bone marrow mesenchymal stem cells, and BMP-9 loaded carbon-based scaffolds as a Biomaterial candidate in Osteoporosis Therapy: A Narrative Review. Research Journal of Pharmacy and Technology 2023; 16(1):459-4. doi: 10.52711/0974-360X.2023.00078
Cite(Electronic):
Muhammad Riza Hafidz Bahtiar, Amelia Aisyiah Anwar, Fitrul Azmi Eka Farhana, Shelsabilla Prameswari, Elly Munadziroh. An insight of Osthole, Bone marrow mesenchymal stem cells, and BMP-9 loaded carbon-based scaffolds as a Biomaterial candidate in Osteoporosis Therapy: A Narrative Review. Research Journal of Pharmacy and Technology 2023; 16(1):459-4. doi: 10.52711/0974-360X.2023.00078 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-1-78
REFERENCES:
1. Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020;Jul 20;19:1017-1037. doi: 10.17179/excli2020-2591.
2. Bhagyashri T, Sakhare R, Suryvanshi U, Kore P, Mohite S, Magdum C. Osteoporosis: The Brittle Bone. Asian J. Pharm. Res. 2018;8(1):39-43. doi: 10.5958/2231-5691.2018.00008.4.
3. Kirsti Uusi-Rasi, Saija Karinkanta, Kari Tokola, Pekka Kannus, Harri Sievänen, Bone Mass and Strength and Fall-Related Fractures in Older Age. Journal of Osteoporosis. 2019;2019:1-6. doi: 10.1155/2019/5134690.
4. Aicha Z, Nour H, Samir D. Analysis of Osteoporosis risk factors in Menopausal women's of Algeria population. Asian J. Res. Pharm. Sci. 2020;10(2):79-84. doi: 10.5958/2231-5659.2020.00015.6.
5. Zohreh K, Monireh A, Ebrahim H. A Description of Osteoporosis Preventive Behaviors in Iranian Adolescent Girls. Asian J. Nur. Edu. and Research. 2016;6(1):1-4. doi: 10.5958/2349-2996.2016.00001.X.
6. Rijo G. Effectiveness of Self-Instructional module on prevention of Osteoporosis among middle aged women who are attending Orthopaedic outpatient department in selected hospital, Bangalore. Int. J. Nur. Edu. and Research. 2020;8(4):525-528. doi: 10.5958/2454-2660.2020.00116.7.
7. Sözen T, Özışık L, Calik B. An overview and management of osteoporosis. European Journal of Rheumatology. 2017; 4(1):46. doi: 10.5152/eurjrheum.2016.048.
8. Bhutani, G, Gupta M. Emerging therapies for the treatment of osteoporosis. J Midlife Health. 2013;4(3):147-152. doi: 10.4103/0976-7800.118991.
9. Banita R, VKSK Priyanka. Oral Contraceptive use and Fracture Risk in Women- A Systemic Review. Asian J. Nursing Education and Research. 2021;11(2):263-266. doi: 10.5958/2349-2996.2021.00063.X.
10. Jesni K, Jismi S, Megha C, Saranya S, Snehamol S, Tisha T, Lincy J, Sheba E. A study to assess the knowledge regarding risk factors and Preventive measures of Osteoporosis among Elderly patients in a selected Hospital Kidandoor. Int. J. of Advances in Nur. Management. 2021;9(2):211-213. doi: 10.5958/2454-2652.2021.00047.0.
11. Chen L, Ko N, Chen K. Medical Treatment for Osteoporosis: From Molecular to Clinical Opinions. International Journal of Molecular Sciences. 2019;20(9):2213. doi: 10.3390/ijms20092213.
12. Zhang Z, Leung W, Cheung H, Chan C. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. Evidence-Based Complementary and Alternative Medicine, 2015:1-10. doi: 10.1155/2015/919616.
13. Zhang Z, Leung W, Li G, Kong S, Lu X, Wong Y, Chan C. Osthole enhances osteogenesis in osteoblasts by elevating transcription factor osterix via cAMP/CREB signaling in vitro and in vivo. Nutrients, 2017;9(6). doi: 10.3390/nu9060588.
14. Zhang R, Li X, Liu Y, Gao X, Zhu T, Lu L. Acceleration of Bone Regeneration in Critical-Size Defect Using BMP-9-Loaded nHA/ColI/MWCNTs Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells. BioMed Res Int, 2019:1-10. doi: 10.1155/2019/7343957.
15. Wei Z, Salmon R, Upton P, Morrell N, Li W. Regulation of Bone Morphogenetic Protein 9 (BMP9) by Redox-dependent Proteolysis. Journal of Biological Chemistry. 2014;289(45):31150-31159. doi: 10.1074/jbc.M114.579771.
16. Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. Journal of Cell Science. 2010;123(10):1684-1692. doi: 10.1242/jcs.061556.
17. Ukon Y. et al., Molecular-Based Treatment Strategies for Osteoporosis: A Literature Review. International Journal of Molecular Sciences. 2019;20(2557):1. doi: 10.3390/ijms20102557.
18. Selvi S. Stem Cell Therapy. International Journal of Advances in Nursing Management. 2017;5(4):361-364. doi: 10.5958/2454-2652.2017.00077.4.
19. Nikolaeva L. The Ionic Balance of Bone Marrow. Research Journal of Pharmacy and Technology. 2020;13(2):877-881. doi: 10.5958/0974-360X.2020.00166.3.
20. Zheng X, Yu Y, Shao B, Gan N, Chen L, Yang D. Osthole improves therapy for osteoporosis through increasing autophagy of mesenchymal stem cells. Experimental Animals. 2019;68(4):453–463. doi : 10.1538/expanim.18-0178.
21. Yu Y, Chen M, Yang S, Shao B, Chen L, Dou L, … Yang D. Osthole enhances the immunosuppressive effects of bone marrow-derived mesenchymal stem cells by promoting the Fas/FasL system. Journal of Cellular and Molecular Medicine. 2021;25(10):4835–4845. doi: 10.1111/jcmm.16459.
22. Jin Z, Liao X, Da W, Zhao Y, Li X, Tang D. Osthole Inhibits Osteoclast Formation and Enhances Bone Mass of Bone Marrow Mesenchymal Stem cells by Activating β -catenin- OPG Signaling Pathway. 2020:1–19. doi: 10.21203/rs.3.rs-133397/v1.
23. Alyasiry A, Aljammali Z, Almosawy A, Alrubbaie S. Dental Health in Osteoporotic Women. Research J. Pharm. and Tech. 2015; 8(10):1383-1388. doi: 10.5958/0974-360X.2015.00248.6.
24. Fujioka-Kobayashi M, Marjanowski SD, Kono M, Hino S, Saulacic N, Schaller B. Osteoinductive potential of recombinant BMP-9 in bone defects of mice treated with antiresorptive agents. Int. J. Oral Macillofac Surg. 2019;25:S0901-5027(21)00289-7. doi: 10.1016/j.ijom.2021.08.014.
25. Khorsand B, Elangovan S, Hong L, Dewerth A, Kormann MS, Salem AK. A Comparative Study of the Bone Regenerative Effect of Chemically Modified RNA Encoding BMP-2 or BMP-9. AAPS J. 2017;19(2):438-446. doi: 10.1208/s12248-016-0034-8.
26. Wang X, Huang J, Huang F, Zong J, Tang X, Liu Y, Zhang Q, Wang Y, Chen L, Yin L, He B, Deng Z. Bone morphogenetic protein 9 stimulates callus formatting in osteoporotic rats during fracture healing. Mol Med Rep. 2017;15(5):2537-2545. doi: 10.3892/mmr.2017.6302.
27. Zhou Y, Yang Y, Jing Y, Yuan T, Sun L, Tao B, Liu J, Zhao H. BMP9 Reduces Bone Loss in Ovariectomized Mice by Dual Regulation of Bone Remodeling. JBMR. 2020;35(5):978-993. doi: 10.1002/jbmr.3957.
28. Xiao H, Wang X, Wang C, Dai G, Zhu Z, Gao S, He B, Liao J, Huang W. 2020. BMP9 exhibits dual and coupled roles in inducing osteogenic and angiogenic differentiation of mesenchymal stem cells. Biosci Rep. 2020;40(6):BSR20201262. doi: 10.1042/BSR20201262.
29. Cheng Q, Rutledge K, Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Annals of Biomedical Engineering. 2013;41(5): 904–916. doi: 10.1007/s10439-012-0728-8.
30. Jing Z, Wu Y, Su W, et al. Carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation in vitro and in vivo. Annals of Biomedical Engineering. 2017;45(9):2075–2087. doi: 10.1007/s10439-017-1866-9.
31. Liu T, Zhang L, Joo D, Sun S. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017;2(1). doi: 10.1038/sigtrans.2017.23.
32. Lee J, Kim L, Choi J. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Frontiers in Immunology. 2018:9. doi: 10.3389/fimmu.2018.02747.
33. Mognol G, González-Avalos E, Ghosh S, Spreafico R, Gudlur A, Rao A, Damoiseaux R, Hogan P. Targeting the NFAT:AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proceedings of the National Academy of Sciences. 2019;116(20):9959-9968. doi: 10.1073/pnas.1820604116.
34. Pang M, Rodríguez‐Gonzalez M, Hernandez M, Recinos C, Seldeen K, Troen B. AP‐1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. Journal of Cellular Biochemistry. 2019;120(8):12382-12392. doi: 10.1002/jcb.28504.
35. Kim J, Lin C, Stavre Z, Greenblatt M, Shim J. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells. 2020;9(9):2073. doi: 10.3390/cells9092073. doi: 10.3390/cells9092073.
36. Shen C, Pei J, Guo X, Zhou L, Li Q, Quan J. Structural basis for dimerization of the death effector domain of the F122A mutant of Caspase-8. Scientific Reports. 2018;8(1). doi: 10.1038/s41598-018-35153-5.
37. Dorstyn L, Akey C, Kumar S. New insights into apoptosome structure and function. Cell Death & Differentiation. 2018;25(7):1194-1208. doi: 10.1038/s41418-017-0025-z.
38. Xu X, Lai Y, Hua Z. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience Reports. 2019;39(1). doi: 10.1042/BSR20180992.
39. Arif M, Syed A, Mahmood A, Khan S, Rizwan M, Munir A. Modeling of apoptosis through gene interaction network and analysis of gene expression pattern. Meta Gene. 2020;25:100730. doi: 10.1016/j.mgene.2020.100730.
40. Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter?. Cellular and Molecular Life Sciences. 2020;77(20):4049-4067. doi: 10.1007/s00018-020-03525-8.
41. Ju T, Zhao Z, Ma L, Li W, Li S, Zhang J. Cyclic Adenosine Monophosphate-Enhanced Calvarial Regeneration by Bone Marrow-Derived Mesenchymal Stem Cells on a Hydroxyapatite/Gelatin Scaffold. ACS Omega. 2021;6(21):13684-13694. doi: 10.1021/acsomega.1c00881.
42. Sato C, Yamazaki D, Sato M, Takeshima H, Memtily N, Hatano Y, Tsukuba T, Sakai E. Calcium phosphate mineralization in bone tissues directly observed in aqueous liquid by atmospheric SEM (ASEM) without staining: microfluidics crystallization chamber and immuno-EM. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-019-43608-6.
43. Houschyar K, Tapking C, Borrelli M, Popp D, Duscher D, Maan Z, Chelliah M, Li J, Harati K, Wallner C, Rein S, Pförringer D, Reumuth G, Grieb G, Mouraret S, Dadras M, Wagner J, Cha J, Siemers F, Lehnhardt M, Behr B. Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far. Frontiers in Cell and Developmental Biology. 2019;6. doi: 10.3389/fcell.2018.00170.
44. Maeda K, Kobayashi Y, Koide M, Uehara S, Okamoto M, Ishihara A, Kayama T, Saito M, Marumo K. The Regulation of Bone Metabolism and Disorders by Wnt Signaling. International Journal of Molecular Sciences. 2019;20(22):5525. doi: 10.3390/ijms20225525.
45. Choi H, Kim G, Yoo H, Song D, Chung K, Lee K, Koo Y, An J. Vitamin C Activates Osteoblastogenesis and Inhibits Osteoclastogenesis via Wnt/β-Catenin/ATF4 Signaling Pathways. Nutrients. 2019;11(3):506. doi: 10.3390/nu11030506.
46. Amarasekara D, Kim S, Rho J. Regulation of Osteoblast Differentiation by Cytokine Networks. International Journal of Molecular Sciences. 2021;22(6):2851. doi: 10.3390/ijms22062851.
47. Wang Y, Feng Q, Ji C, Liu X, Li L, Luo J. RUNX3 plays an important role in mediating the BMP9-induced osteogenic differentiation of mesenchymal stem cells. International Journal of Molecular Medicine. 2017;40;1991-1999. doi: 10.3892/ijmm.2017.3155.
48. Mostafa S, Pakvasa M, Coalson E, Zhu A, Alverdy A, Castillo H, Fan J, et al. The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes & Diseases. 2019;6(3):201-223. doi: 10.1016/j.gendis.2019.07.003.
49. Liu H, Li X, Lin J, Lin M. Morroniside promotes the osteogenesis by activating PI3K/Akt/mTOR signaling. Bioscience, Biotechnology, and Biochemistry. 2021;85(2):332-339.doi: 10.1093/bbb/zbaa010.
50. Tong X, Gu J, Song R, Wang D, Sun Z, Sui C, Zhang C, et al. Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. Journal of Cellular Biochemistry. 2018:120(2):1630-1642. doi: 10.1002/jcb.27468.
51. Pal K, Madamsetty V, Dutta S, Wang E, Angom R, Mukhopadhyay D. Synchronous inhibition of mTOR and VEGF/NRP1 axis impedes tumor growth and metastasis in renal cancer. npj Precision Oncology. 2019;3(1). doi: 10.1038/s41698-019-0105-2.
52. Hsieh H, Zhang W, Lin S, Yang W, Wang J, Shen J, Zhang Y, et al. Systems biology approach reveals a link between mTORC1 and G2/M DNA damage checkpoint recovery. Nature Communications. 2018;9(1). doi: 10.1038/s41467-018-05639-x.
53. Lamm N, Rogers S, Cesare A. The mTOR pathway: Implications for DNA replication. Progress in Biophysics and Molecular Biology. 2019;147:17-25. doi: 10.1016/j.pbiomolbio.2019.04.002.